Package: disaggR 1.0.5.3

Pauline Meinzel

disaggR: Two-Steps Benchmarks for Time Series Disaggregation

The twoStepsBenchmark() and threeRuleSmooth() functions allow you to disaggregate a low-frequency time series with higher frequency time series, using the French National Accounts methodology. The aggregated sum of the resulting time series is strictly equal to the low-frequency time series within the benchmarking window. Typically, the low-frequency time series is an annual one, unknown for the last year, and the high frequency one is either quarterly or monthly. See "Methodology of quarterly national accounts", Insee Méthodes N°126, by Insee (2012, ISBN:978-2-11-068613-8, <https://www.insee.fr/en/information/2579410>).

Authors:Arnaud Feldmann [aut], Pauline Meinzel [cre], Thomas Laurent [ctb], Franck Arnaud [ctb], Institut national de la statistique et des études économiques [cph]

disaggR_1.0.5.3.tar.gz
disaggR_1.0.5.3.zip(r-4.5)disaggR_1.0.5.3.zip(r-4.4)disaggR_1.0.5.3.zip(r-4.3)
disaggR_1.0.5.3.tgz(r-4.5-any)disaggR_1.0.5.3.tgz(r-4.4-any)disaggR_1.0.5.3.tgz(r-4.3-any)
disaggR_1.0.5.3.tar.gz(r-4.5-noble)disaggR_1.0.5.3.tar.gz(r-4.4-noble)
disaggR_1.0.5.3.tgz(r-4.4-emscripten)disaggR_1.0.5.3.tgz(r-4.3-emscripten)
disaggR.pdf |disaggR.html
disaggR/json (API)
NEWS

# Install 'disaggR' in R:
install.packages('disaggR', repos = c('https://inseefr.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/inseefr/disaggr/issues

Pkgdown site:https://inseefr.github.io

On CRAN:

Conda:

disaggregationstatistical-packagetime-series

6.01 score 11 stars 31 scripts 694 downloads 27 exports 1 dependencies

Last updated 9 months agofrom:c2a531babc. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 11 2025
R-4.5-winOKMar 11 2025
R-4.5-macOKMar 11 2025
R-4.5-linuxOKMar 11 2025
R-4.4-winOKMar 11 2025
R-4.4-macOKMar 11 2025
R-4.4-linuxOKMar 11 2025
R-4.3-winOKMar 11 2025
R-4.3-macOKMar 11 2025

Exports:annualBenchmarkbflSmoothdefault_col_paldefault_lty_paldefault_marginsdefault_theme_ggplotdistancein_disaggrin_revisionsin_samplein_scatterMath2model.listOpsoutlierspraisrePortresiduals_extrapreUseBenchmarkreViewrhoseshowsmoothed.partsmoothed.ratethreeRuleSmoothtwoStepsBenchmark

Dependencies:RColorBrewer

Introduction to disaggR

Rendered fromdisaggr.Rmdusingknitr::rmarkdownon Mar 11 2025.

Last update: 2022-02-28
Started: 2021-08-16

Outliers in two-step benchmarks

Rendered fromdisaggr_outlier.Rmdusingknitr::rmarkdownon Mar 11 2025.

Last update: 2022-07-19
Started: 2022-07-19